Correction: Essential and Checkpoint Functions of Budding Yeast ATM and ATR during Meiotic Prophase Are Facilitated by Differential Phosphorylation of a Meiotic Adaptor Protein, Hop1

نویسندگان

  • Ana Penedos
  • Anthony L. Johnson
  • Emily Strong
  • Alastair S. Goldman
  • Jesús A. Carballo
  • Rita S. Cha
چکیده

Polyclonal antibodies against the Hop1 phospho-T318 and phospho-S298 were obtained as following: The α-pT318 polyclonal antibody [Cambridge Research Biochemicals] was obtained by immunising two rabbits with the antigenic [C]-Ahx-ASIQP-[pT]-QFVSN where C is a cysteine residue added at the N-terminus of the peptide, Ahx is aminohexanoicacid and pT is a phosphorylated threonine residue. Upon bleeding, antibodies were purified through two affinity columns (each followed by a purification pass), the first adsorbing antibodies that bind to non-phosphorylated peptides and the second adsorbing the phospho-specific antibodies to pT318. The specificity of the antibody was tested using ELISA (enzyme-linked immunosorbent assay) analysis. The polyclonal phospho-specific antibody against phosphorylated serine residue 298 [Eurogentec] was obtained by immunising four guinea pigs with the antigenic peptide [C]-PQNFVT-[pS]-QTTNV, where C represents a cysteine added at the N-terminus of the peptide and pS is a phosphorylated serine residue. The α-pS298 antibody was purified in a similar manner to the α-pT318 antibody.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential and Checkpoint Functions of Budding Yeast ATM and ATR during Meiotic Prophase Are Facilitated by Differential Phosphorylation of a Meiotic Adaptor Protein, Hop1

A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions:...

متن کامل

Phosphorylation of the Axial Element Protein Hop1 by Mec1/Tel1 Ensures Meiotic Interhomolog Recombination

An essential feature of meiosis is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks (DSBs) is repaired using an intact homologous non-sister chromatid rather than a sister. Involvement of Mec1 and Tel1, the budding yeast homologs of the mammalian ATR and ATM kinases, in meiotic interhomlog bias has been implicated, but the mechanism remain...

متن کامل

Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis

Red1, Hop1 and Mek1 are three yeast meiosis-specific chromosomal proteins that uphold the interhomolog (IH) bias of meiotic recombination. Mek1 is also an effector protein kinase in a checkpoint that responds to aberrant DNA and/or axis structure. The activation of Mek1 requires Red1-dependent Hop1-Thr(T)318 phosphorylation, which is mediated by Mec1 and Tel1, the yeast homologs of the mammalia...

متن کامل

Direct and Indirect Control of the Initiation of Meiotic Recombination by DNA Damage Checkpoint Mechanisms in Budding Yeast

Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs). The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the ...

متن کامل

Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA(+)-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016